
PLC-Based Safety Critical Software Development
for Nuclear Power Plants

Junbeom Yoo1, Sungdeok Cha1,
Han Seong Son2, Chang Hwoi Kim2, and Jang-Soo Lee2

1 Korea Advanced Institute of Science and Technology(KAIST) and AITrc/SPIC/IIRTRC
Department of Electrical Engineering and Computer Science,

373-1, Kusong-dong, Yusong-gu, Taejon, Korea,
{jbyoo,cha}@salmosa.kaist.ac.kr

2 Korea Atomic Energy Research Institute(KAERI) MMIS team,
150, Deokjin-dong, Yusong-gu, Taejon, Korea,

{hsson,chkim2,jslee}@kaeri.re.kr

Abstract. This paper proposes a PLC(Programmable Logic Controller)-based
safety critical software development technique for nuclear power plants’ I&C soft-
ware controllers. To improve software safety, we write the software requirements
specification using a formal specification notation named NuSCR [1]. NuSCR
specification is then mechanically transformed into semantically equivalent Func-
tion Block Diagram(FBD), a widely used PLC programming language. Finally, we
manually refine the FBD programs so that redundant function blocks are identified
and removed. As CASE tool supplied by PLC vendors automatically compiles the
resulting FBD programs into PLC machine code, PLC software development is
completed when the final FBD programs are essentially tested.
Proposed development technique offers several advantages. Requirement errors
are reduced as we use the formal specification notation. Consistency and com-
pleteness checks are automated, and model checking can be performed on the
NuSCR specification. Safety critical errors are less likely to be introduced to the
synthesized FBD programming. As a consequence, cost of developing and val-
idating the PLC-based software can be also reduced. The proposed approach is
currently being applied in developing safety-critical control software for a Korean
nuclear power plant, and experience to date has been positive.

1 Introduction

PLC [2] is widely used in industry to implement real-time safety critical software [3].
Such trend is especially true in the area of nuclear power plant’s I&C(Instrumentation
and Control) systems as aged RLL(Relay Ladder Logic)-based analog systems are being
replaced by PLC-based digital systems [4].

Software development process for control software in nuclear power plants gener-
ally consists of analysis, design, and implementation phases. Software requirements are
initially written in natural language, and a formal specification is developed on which
various formal analysis techniques are applied. As embedded software controlling nu-
clear power plants usually run on PLCs, PLC programs, written in Ladder Diagram(LD)

M. Heisel et al. (Eds.): SAFECOMP 2004, LNCS 3219, pp. 155–165, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

156 J. Yoo et al.

or Function Block Diagrams(FBDs) [2], are developed and documented in software de-
sign specification(SDS). In implementation phase, the hardware configuration for PLC,
i.e. number of I/O cards, CPU speed, network communication, is decided, and then
PLC programs are translated into machine code. This translation process is conducted
automatically by an engineering tool, which is provided by PLC vendors. Therefore,
the actual software development for PLC software is completed at the end of the design
phase.

If software requirements specification is written in a natural language, much effort
would be needed to certify its safety using inspection, simulation, and other safety
analysis techniques. Likewise, manual programming of PLC programs is inefficient and
a potentially error-prone task.

In this paper, we propose a PLC-based software development method. It consists of
three phases: formal requirements specification, synthesis, and refinement phase. It uses
the formal software requirements specification language, NuSCR [1], to express and
analyze the software requirements. Formal software requirements specification allows
developers to specify all requirements explicitly and completely while avoiding incon-
sistency in logic. Mechanical and formal verification methods, such as model checking
[5] and mechanized theorem proving [6], can also be applied to NuSCR formal require-
ments.

In synthesis phase, we mechanically transform the NuSCR formal specification into
FBD program using an intermediate notation called the 2C-Table. Comparison of syn-
thesized FBD against the manually developed FBDs revealed that experts could reduced
the number of required FBD blocks by up to 50%. While the scan cycle of PLC is be-
tween 30 - 50ms, the total execution time of the manually programmed FBD program
operating on PLC is usually at most 5 - 10ms. Therefore, the two times increase of the
number of function blocks does not seriously affect timely execution of PLC code.

While FBD code can be automatically generated, domain engineers are still most
likely to modify or manually optimize synthesized FBD code. In refinement phase, we
are working on formal method support so that the semantic equivalence between the two
FBD codes can be verified.

The remainder of the paper is organized as follows: Section 2 briefly introduces
the PLC. In Section 3, we explain the proposed PLC based safety critical software
development method. To aid the understanding we use the real case study, which is
presently being developed in Korea. Conclusion and future work are in Section 4.

2 Programmable Logic Controller

Programmable Logic Controller(PLC), which is widely used in the real-time and safety-
critical systems industry, has features as follows [7]:

Concise Hardware Architecture. PLC has a relatively simple hardware architecture
that facilitate the input/output configurations. This architectural characteristics makes
the exact analysis of the program execution time possible. Operating system for PLC is
provided by PLC vendors, and the application programs operating on the real-time OS
are programmed with SFC, LD, or FBD using CASE tool supplied by PLC vendors.

PLC-Based Safety Critical Software Development for Nuclear Power Plants 157

SEL

G

IN0

IN1

OUT

OUT = IN0 if G = 0
OUT = IN1 if G = 1

Selection OperationTimer Operation

TOF

IN

DELAY

OUT

OUT = 0 if IN = 0 is continued for DEALY time
OUT = 1 Otherwise

TIME

Arithmetic Operation

ADD_(Type)
...

IN1

IN2

INn

OUT

OUT = IN1 + IN2 + ... + INn

Fig. 1. IEC 61131-3 FBD samples

Program Execution Mechanism. PLC programs are executed in a permanent loop.
In each iteration of loop, a scan cycle, inputs are read. The program computes a new
internal state and output, and the outputs are updated. There exists an upper time bound
for each cycle, which typically is in the order of milli-seconds.

Programming Languages. IEC 61131-3 standard include five PLC programming lan-
guages: ST(Structured Text), LD, IL(Instruction List), SFC, and FBD. In practice, FBD
and LD are most widely used. FBD, similar to electrical circuit diagram in appearance,
consists of a network of function blocks and regards the system as the flow of informa-
tion expressed with primitive function blocks. (See 〈Fig.1〉 for samples of widely used
basic function blocks.) Basic FBs can be classified into logical, arithmetic, selection,
and timing operations, and it is known that the RPS(reactor protection system), which
is presently being developed in Korea, can be programmed using 14 different types of
FBD blocks belonging to the four groups mentioned above.

3 PLC-Based Software Development

An overview of the PLC-based software development process, starting with NuSCR
formal specification and ending with validation of refined FBD code, is shown in 〈Fig.2〉.

Fig. 2. Overview of formal method guided PLC based software development

158 J. Yoo et al.

3.1 Phase I: Formal Requirements Specification

NuSCR [1] was developed with active participation of and consultation by nuclear en-
gineers who are familiar with software engineering knowledge in general and formal
methods in particular. Readability of the specification to domain experts was a key con-
cern when deciding which notation to use to capture various aspects of requirements.

It uses FOD(Function Overview Diagram) for the overview of data flows. In addition,
it introduces three basic constructs, function variable, history variable, and timed history
variable. These constructs are written in SDT(Structured Decision Table), FSM(Finite
State Machine), and TTS(Timed Transition System) [8] notations respectively. Function
variables specify mathematical functional behavior of system, and they are defined as
SDT, which is a condtion/event table. History variables describe state-based behavior in
finite state machine where transitions capture triggering events or conditions as well as
generated actions. Timed-history variables express timing constraints in extended FSM
notations.

〈Fig.3〉 describes the basic constructs of NuSCR. 〈Fig.3 (a)〉 is a FOD for g Fixed S-
etpoint Rising Trip with OB logic for fixed set-point rising trip in RPS(Reactor Pro-
tection System) BP(Bistable Logic), which is currently being developed at KNICS in
Korea. g means that it is a group of node in the FOD hierarchy and that details are fur-
ther captured in a separate FOD diagram. It is composed of five internal nodes, and they
are all defined individually. The prefixes "f ", "h ", and "th " denote function variable
nodes, history variable nodes, and timed history variable nodes, respectively. Arrows
denote data-flow dependency relation.

〈Fig.3 (b)〉 is an TTS definition for timed history variable node th X Trip appear-
ing in the FOD. TTS is a FSM extended with time duration constraint [a, b] in tran-
sition conditions. TTS defines the time-related behavior of nuclear power plants con-
trol systems. The TTS definition for th X Trip is interpreted as follows: "If condition
f X ≥ k X Trip Setpoint is satisfied in state Normal, it transits to Waiting state. In
this state, if the condition is lasted for k Trip Delay then it fires the trip signal 0. If
f X Valid, f Module Error, or f Channel Error occur, then trip signal is fired at once.
In the state Trip By Error or Trip By Logic, if the trip conditions are canceled, then it
comes back to the state Normal and the output is 1." The TTS expression in Cond b,
[k Trip Delay,k Trip Delay] means that the condition has to remain true for k Trip Delay
time units.

〈Fig.3 (c)〉 is an FSM definition for history variable node h X OB Sta in the FOD.
It is interpreted as follows: " In initial state No OB State, if condition f X Perm = 1 and
f X OB Ini = 1is satisfied , it transits to OB State with setting h X OB STA is 1. In state
OB State, if condition f X Perm = 0 is satisfied, then it transits back to No OB State with
setting h X OB STA is 0 again.

〈Fig.3 (d)〉 is an SDT definition for function variable node f X Valid. It is interpreted
as follows: "If the value of f X is between k X MIN and k X MAX, the output value
f X Valid is 0, which means it is a normal case. Otherwise output value of f X Valid
is 1." NuSCR recommends multiple correlated condition statements per row. In this
way, NuSCR can resolve a large part of the table-size explosion problems, and also can
increase the readability of SDTs [9].

PLC-Based Safety Critical Software Development for Nuclear Power Plants 159

f_X

f_Module_Error

f_Channel_Error

f_X_OB_Ini

f_X_Va
lid
1

th_X_Pretrip
4

th_X_Pretrip

th_X_Trip
5

th_X_Trip

f_X_OB
_Perm

2

h_X_OB_Sta
3 h_X_OB_Sta

f_X_OB_Perm

Cond_a : f_X >= k_X_Trip_Setpoint
Cond_b : [k_Trip_Delay, k_Trip_Delay] (f_X >= k_X_Trip_Setpoint and h_X_OB_Sta = 0)
Cond_c : f_X < k_X_Trip_Setpoint - k_X_Trip_Hys
Cond_d : f_X_Valid = 1 or f_Module_Error = 1 or f_Channel_Error = 1)

Waiting Normal

Cond_a
and not cond_d

not cond_a
and not cond_d

Trip_By
_Logic

Cond_c and not
Cond_d
/ th_X_Trip := 1

Cond_d
/ th_X_Trip := 0

Cond_b and not
Cond_d
/ th_X_Trip := 0

Cond_d
/ th_X_Trip := 0

not Cond_d
/ th_X_Trip := 1

Trip_By
_Error

Cond_d
/ th_X_Trip := 0

(a) Function overview diagram

(b) Timed history variable node defined by TTS
for th_X_Trip

No_OB
_State

OB_Sta
te

f_X_OB_Perm = 1
and f_X_OB_Ini = 1 /
h_X_OB_STA := 1

f_X_OB_Perm = 0
/ h_X_OB_STA := 0

(c) History variable node defined by FSM
for h_X_OB_Sta

(d) Function Variable Node defined as SDT
for f_X_Valid

: Input or output
 node

: function node

: history node

: timed-history node

: data flow

< Legend >

Fig. 3. Basic constructs of NuSCR

3.2 Phase II: FBD Synthesis from NuSCR SRS

In this phase, we derive PLC-based FBD program from the requirements specification
written in NuSCR. See [10,11] for detailed discussion on the formal definitions of rules,
algorithms, and procedures. FBD generation process has 4 steps. First we perform con-
sistency and completeness analysis of selected nodes, which are defined as SDT, FSM,
or TTS. After modifying all nodes to be complete and consistent, we produce 2C-Table
for corresponding FSM and TTS. 2C-Table is an intermediate notation that are used to
facilitate the FBD generation process for FSM and TTS. In the next step, FBDs are gen-
erated from SDTs of 2C-Tables. After generating the individual FBDs, we analyze the
dependency among nodes in FOD and decide appropriate execution orders for all nodes
in the FOD. As PLC executes its application programs sequentially, proper selection of
execution order is essential. Details of each step, along with an example, is explained
below:

160 J. Yoo et al.

Cond_a : f_X >= k_X_Trip_Setpoint
Cond_b : [k_Trip_Delay, k_Trip_Delay] (f_X >= k_X_Trip_Setpoint and h_X_OB_Sta = 0)
Cond_c : f_X < k_X_Trip_Setpoint - k_X_Trip_Hys
Cond_d : f_X_Valid = 1 or f_Module_Error = 1 or f_Channel_Error = 1)

Waiting Normal

Cond_a and
not cond_d

not cond_a
and not cond_d

Trip_By
_Logic

Cond_c and not
Cond_d
/ th_X_Trip := 1

Cond_d
/ th_X_Trip := 0

Cond_b and not Cond_d
/ th_X_Trip := 0

Cond_d
/ th_X_Trip := 0

not Cond_d
/ th_X_Trip := 1

Trip_By
_Error

Cond_d
/ th_X_Trip := 0

not (Cond_d
or (Cond_b and not Cond_d))
/ th_X_Trip := prev

not (Cond_d
or (not Cond_a and not Cond_d)
or (Cond_b and not Cond_d))
/ th_X_Trip := prev

not (Cond_d
or (Cond_c and not Cond_d))
/ th_X_Trip := prev

not (not Cond_d)
/ th_X_Trip := prev

Fig. 4. Modified complete and consistent TTS for th X Trip

(Step 1) Completeness and Consistency Analysis. NuSCR allows inclusion of arbi-
trarily complex expressions and macros in SDT and automata such as FSM and TTS.
When specifying state- and time-dependent behavior using (timed)automata notation,
not all edges are drawn explicitly. In addition, SDT may contain nondeterminism if
specific ordering of execution sequences does not matter. While such features reduce
complexity of requirements, all the missing details and exceptional situations must be
made explicit, complete and consistent. For example, 〈Fig.4〉 illustrates the results of
performing consistency and completeness analysis applied on 〈Fig.3 (b)〉. FSM, which
defines the history variable node, can be modified in the same way so that automata
remains in the current state if no conditions initiating a transition to other states are
satisfied. In this case, we need to specify the implicit transitions explicitly . If there is
no action statement in the transition label in FSM and TTS, then NuSCR regards that
the output is set to the same value in the previous scan cycle (i.e. th X Trip := prev).

(Step 2) 2C-Table Generation. While format is similar to that of SDT, 2C-Table has
an additional action part capturing changes made to state variables. 〈Fig.5〉 is the 2C-
Table obtained from modified automata shown in 〈Fig.4〉. SV is the state variable, and
Output denotes the output of th X Trip node. For example, the second column of 〈Fig.5〉,
shaded for the purpose of illustration, denotes that if condition "Cond a and not Cond d"

PLC-Based Safety Critical Software Development for Nuclear Power Plants 161

Fig. 5. 2C-Table for TTS of th X Trip

is satisfied in state Normal, the output value of th X Trip is the same as the previous one
and the next state is Waiting.

(Step 3) Basic FBD Generation. The next step separately generates basic FBD from
each SDT and 2C-Table. Reflecting the characteristics of PLC, where input values are
first read before output values are computed, FBD generated from SDT and 2C-Table
consists of two parts: (1) preprocessing routine in which conditions and macros used in
the SDTs are first evaluated; and (2) computation routine where output and state values
are determined. 〈Fig.6〉 is a generated from the SDT shown in 〈Fig.3 (c)〉. Complex con-
ditions are internally decomposed into a collection of primitive predicates, and Boolean
operators are replaced by the corresponding FBD blocks. [11] describes the details of
the algorithm. The FBD is made from Concept version 2.2 XL SR2, a PLC programming
assistant tool by Schneider Automation GmbH [12], and the numbers above the function
blocks indicate the generation and execution orders. 2C-Table is also transformed, as
shown in 〈Fig.7 〉, into FBDs using the same procedure. SEL and MUX function block
allows one of several inputs to be chosen as outputs and updated value of state variables.

〈Fig. 7 (b)〉 is the whole output processing part FBD for th X Trip. The selection
among many condition statements and their corresponding action statements in 2C-Table
or SDT are implemented in FBD with SEL function block. Each condition and output
statements are preprocessed previously, and the results are used in the output calcula-
tion. The current state of automata node(FSM and TTS), Status, provides the basis of the

162 J. Yoo et al.

Fig. 6. FBD generated from SDT of f X Valid

decision about which one in SEL function blocks we have to select as an output, and this
selection process is implemented using MUX function block with status. MUX function
block generates a selected output according to status, and the variable status is imple-
mented as 〈Fig.7 (c)〉 from the lower part of 2C-Table in 〈Fig.5〉.Variable th Prev X Trip,
which is the other output in the FBD, is the internal variable used in only the FBD. Af-
ter these processes are finished, we get the individual FBDs for all nodes, s.t. function
variable nodes, history variable nodes, and timed-history variable nodes, in FOD.

(Step 4) FBD Execution Order Decison. In the final step, the execution order for each
FBDs in FOD is analyzed and then decided. The possible execution orders for the 5
nodes composed in FBD in 〈Fig. 3 (a)〉 is as follows: At first, there are two partial orders
among the 5 nodes in FOD as their input/output relationships. As the node numbered 4
has no interaction with other nodes, it is considered independent of others.

Partial execution order 1: (1 −→ 5)
Partial execution order 2: (2 −→ 3 −→ 5)
Independent execution: (4)

All possible combinations of execution orders are shown below, and one is picked
nondeterministically as all are equivalent.

Execution order 1:
(Input) → 1 → 2 → 3 → 5 → (4) →(Output)
Execution order 2:
(Input) → 2 → 1 → 3 → 5 → (4) →(Output)
Execution order 3:
(Input) → 2 → 3 → 1 → 5 → (4) →(Output)

PLC-Based Safety Critical Software Development for Nuclear Power Plants 163

(b) Output processing part FBD

(a) Preprocessing part FBD

(c) State-variable processing part FBD

Fig. 7. FBD generated from TTS of th X Trip

164 J. Yoo et al.

Fig. 8. An example of refined FBD from Fig.7(b) and (c)

3.3 Phase III: FBD Refinement

Finally in refinement phase, we allow domain experts to refine the generated FBD pro-
gram. Our case study revealed that manually prepared FBD may contain fewer number
of FBD blocks, and execution time takes less. Therefore, to increase chance that exe-
cution of PLC code satisfies the timing requirements, additional modification processes
are provided to further reduce the size of generated FBD program. 〈Fig.8〉 is an example
of refined FBD from the one in 〈Fig.7 (b),(c)〉.

However, the revised FBD code must be tested to demonstrate that it is still the same
in its behavior. We are currently focusing on sequential equivalence [13] of two FBD
programs to verify their behavioral equivalence. Some formal and automated techniques,
such as VIS model checker [14] or COSPAN/FormalCheck [15], may be used to verify
their behavioral equivalence.

4 Conclusion and Future Work

In this paper, we proposed a PLC based safety critical software development process in
which formal methods played critical roles. It improves safety of embedded software
and reduces time needed to develop safety-critical software.

We have been applying our proposed method successfully to develop the plant pro-
tection system to be deployed in a nuclear power plant in Korea. Experience by domain
experts on the proposed approach has been positive, and we are currently working on de-
velopment of analysis methods used to check the behavioral equivalence of subsequently
modified FBDs. This analysis method is expected to accelerate the whole appliance of
our proposed transformation-based PLC software development method.

PLC-Based Safety Critical Software Development for Nuclear Power Plants 165

Acknowledgements. This research was partially supported by Advanced Information
Technology Research Center(AITrc), Software Process Improvement Center(SPIC), and
Internet Intrusion Response Technology Research Center(IIRTRC) in Korea.

References

1. Yoo, J., Cha, S., Son, H.S., Kim, C.H., Lee, J.S.: A formal software requirements specification
method for digital nuclear plants protection systems. Journal of Systems and Software to be
published (2003)

2. Commission, I.E.: International standard for programmable controllers: Programming lan-
guages (1993) part 3.

3. Leveson, N.G.: SAFEWARE, System safety and Computers. Addison Wesley (1995)
4. NRC, U.: Digital Instrumentation and Control Systems in Nuclear Power Plants: safety and

reliability issues. National Academy Press (1997)
5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Trans. Programming Languages and Sy-
sems 8 (1986) 244–263

6. Dalen, D.V. In: Logic and Structure. 3 edn. Springer-Verlag (1994)
7. Mader, A.: A classification of plc models and applications. In: Discrete Event Systems-

Analysis and Control: WODES 2000. (2000)
8. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: REX Workshop. (1991)

226–251
9. Yoo, J., Cha, S., Kim, C., Oh,Y.: Formal software requirements specification for digital reactor

protection systems. Journal of KISS(Korea Information and Science Society) to be published
(2004)

10. Yoo, J., Cha, S., Kim, C., Song, D.Y.: Synthesis of FBD-based PLC design from NuSCR
formal specification. Reliability Engineering and System Safety to be published (2004)

11. Yoo, J., Bang, H., Cha, S.: Procedural transformation from formal software requirement to
PLC-based design. Technical Report CS/TR 2004-198, Korea Advanced Institute of Science
and Technology(KAIST), 373-1, Kusong-dong, Yusong-gu, Taejon, Korea (2004)

12. Electric, S.: (http://www.modicon.com/)
13. Huang, S.Y., Cheng, K.T.: 4. In: Fromal Equivalence Checking and Debugging. Kliwer

Academic Publishers (1998)
14. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng,

S.T., Edwards, S., Khatri, S., Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary, S.,
Shiple, T.R., Swamy, G., Villa, T.: ((vis)

15. Kurshan, R.P.: Computer Aided Vrification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)

	Introduction
	Programmable Logic Controller
	PLC-Based Software Development
	Phase I: Formal Requirements Specification
	Phase II: FBD Synthesis from NuSCR SRS
	Phase III: FBD Refinement

	Conclusion and Future Work

